April 13, 2016

DAVENPORT
305 West Fourth Street, Suite 2A
Winston-Salem, NC 27101

Attn: Mr. Charles Boecker, P.E.
Office: (336) 829-4833
Email: cboecker@davenportworld.com

Re: Geotechnical Roadway Recommendations Report
Meadowlark Drive Road Widening
Winston-Salem, North Carolina
Terracon Project No. 75165109

Dear Mr. Boecker,

Terracon Consultants, Inc. (Terracon) has performed geotechnical engineering services for the above referenced project and presents the following recommendations. Our services were performed in general accordance with Terracon Proposal No. P75150040R2 dated March 11, 2015. We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

I. Slope / Embankment Stability

A. Slope Design
Slopes should be constructed at a ratio of 2:1 (H:V) or flatter.

B. Undercut for Embankment Stability
We recommend a contingency quantity of 500 cubic yards of undercut for embankment stability be included in the contract for use at the discretion of the Engineer.

C. Geotextile for Soil Stabilization
We recommend a quantity of 500 square yards of geotextile for soil stabilization be included in the project contract as a contingency for use at the discretion of the Engineer.

II. Subgrade Stability

A. Subgrade Stability Undercut
We recommend a contingency quantity of 1,000 cubic yards of subgrade stability undercut be included in the project contract for use at the discretion of the Engineer.

per Terracon, the pavement recommendation report, dated October 26, 2016, supersedes this portion of the report.
B. Aggregate Subgrade*
Shallow undercut to a depth of 18 inches below proposed subgrade elevation is recommended for the following locations. A quantity of shallow undercut should calculated from the final cross sections by the roadway design engineer.

<table>
<thead>
<tr>
<th>Alignment</th>
<th>Stations</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>-L-</td>
<td>102+25 to 120+25</td>
<td>Left and Right</td>
</tr>
<tr>
<td>-Y3-</td>
<td>11+50 to 13+00</td>
<td>Left and Right</td>
</tr>
</tbody>
</table>

We recommend a contingency quantity of 1,000 cubic yards of shallow undercut be included in the project contract for use at the discretion of the Engineer.

The material derived from the areas of shallow undercut should be wasted.

*See Section 505 of the NCDOT 2012 Standard Specifications

C. Geotextile for Soil Stabilization
We recommend geotextile for soil stabilization be placed in the base of the shallow undercut for the areas listed in Section II.B. A quantity of geotextile for soil stabilization equal to the proposed subgrade areas outlined in Section II. B. should calculated from the final cross sections by the roadway design engineer.

In conjunction with the contingency in Section II. B., an additional 2,000 square yards of geotextile for soil stabilization should be included in the project contract as a contingency for use at the discretion of the Engineer.

III. Borrow Specifications
A. Shrinkage Factor
A shrinkage factor of 15 percent is recommended for calculation of earthwork quantities on this project.

B. Select Granular Material
We recommend a contingency quantity of 500 cubic yards of Class II or Class III Select Granular Material be included in the contract for use as backfill over the geotextile for soil stabilization indicated in Section I.C. Select granular material for embankment construction and backfill over geotextile for soil stabilization shall meet the criteria outlined in the NCDOT 2012 Standard Specifications, Article 1016-3, Class II and/or III.

C. Class IV Subgrade Stabilization Material
We recommend a quantity of Class IV Subgrade Stabilization Material, to be calculated in tons using 145 pounds per cubic feet equal to the volume of shallow undercut
computed from final cross sections as recommended in Section II. B., be included in the project contract to be utilized as backfill for the areas outlined in Section II.B.

In conjunction with the contingency quantity of shallow undercut recommended in Section II. B., an additional 2,000 tons of Class IV should be included in the project contract as a contingency for use at the discretion of the Engineer.

IV. Miscellaneous

A. Reduction of Unclassified Excavation - Unsuitable

Highly plastic clay soils with a PI>35 was encountered in the proposed cut sections on the alignments listed below. Material derived from these cut sections on the project will not be suitable for use on the project. We recommend these areas be computed as waste in the earthwork quantities for the project.

<table>
<thead>
<tr>
<th>Alignment</th>
<th>Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-L-</td>
<td>120+25 to 124+25</td>
</tr>
<tr>
<td>-L-</td>
<td>132+75 to 135+75</td>
</tr>
</tbody>
</table>

B. Reduction of Unclassified Excavation - Unsuitable for Subgrade Construction

Highly plastic clay soils with a PI≥26≤35 were encountered in the proposed cut sections on the alignments listed below. Material derived from these cut sections on the project may be used to offset borrow for embankment construction, but are not suitable for use within 3 feet of subgrade elevation.

<table>
<thead>
<tr>
<th>Alignment</th>
<th>Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-L-</td>
<td>102+25 to 120+25</td>
</tr>
<tr>
<td>-L-</td>
<td>175+75 to 183+75</td>
</tr>
<tr>
<td>-L-</td>
<td>175+75 to 183+75</td>
</tr>
<tr>
<td>-L-</td>
<td>192+75 to 198+25</td>
</tr>
<tr>
<td>-Y3-</td>
<td>11+50 to 13+00</td>
</tr>
<tr>
<td>-Y4-</td>
<td>10+25 to 14+25</td>
</tr>
</tbody>
</table>

Respectfully Submitted,
Terracon Consultants, Inc.

James D. Hoskins, III, PE
Principal/Office Manager II

Kevin B. Miller, PG
Senior Staff Geologist
STATE OF NORTH CAROLINA
DEPARTMENT OF TRANSPORTATION
DIVISION OF HIGHWAYS
GEOTECHNICAL ENGINEERING UNIT

ROADWAY
SUBSURFACE INVESTIGATION

COUNTY: FORSYTH
PROJECT DESCRIPTION: MEADOWLARK DRIVE
WIDENING PROJECT FROM COUNTRY CLUB ROAD
TO ROBINHOOD ROAD IN WINSTON-SALEM

INVENTORY

LABORATORY RESULTS SHEET 65

TERACON CONSULTANTS
2401 BRENTWOOD ROAD, SUITE 107
RALEIGH, NORTH CAROLINA 27604
PHONE: (919) 873-2211 FAX: (919) 873-9555
NC REGISTERED FIRM: F-0869

April 13, 2016

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

PAGE 1 OF 65

April 13, 2016

STATE PROJECT REFERENCE NO.
STATE NO.
SHEET
TOTAL

N.C.
14-038
1
65

INVENTORY

PERSONNEL
WINGO ENTERPRISES
B. KING
P. WINGO

DESIGNATED BY
TERRACON CONSULTANTS

DRAWN BY
FIELDS, W. D.

CHECKED BY
MILLER, K. B.

UNLESS ALL SIGNATURES COMPLETED

SEAL
2029

FIELD WORK
IMPRINTED
2029

INVENTORY

INVENTORY

INVENTORY

INVENTORY

INVENTORY
April 13, 2016

DAVENPORT
305 West Fourth Street, Suite 2A
Winston-Salem, NC 27101

Attn: Mr. Charles Boecker, P.E.
Office: (336) 829-4833
Email: cboecker@davenportworld.com

Re: Geotechnical Roadway Subsurface Investigation Report
Meadowlark Drive Road Widening
Winston-Salem, North Carolina
Terracon Project No. 75165109

Dear Mr. Boecker,

Terracon Consultants, Inc. (Terracon) has performed geotechnical engineering services for the above referenced project. Our services were performed in general accordance with Terracon Proposal No. P75150040R2 dated March 11, 2015. This report presents the findings of the subsurface exploration for the proposed roadway. We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Project Description

The project is located within the city limits of Winston-Salem in Forsyth County. The project begins at the intersection of Meadowlark Drive with Country Club Road and continues along Meadowlark Drive for 2.06 miles to its intersection with Robinhood Road. The project corridor area is semi-rural with several large residential developments, an elementary school, a middle school, and two commercial developments located at either end of the project. Also included in the project is the addition of a greenway trail along the right side of the main alignment.

The geotechnical subsurface investigation was performed in December of 2015. A Diedrich D-50 rotary drill machine equipped with an automatic Standard Penetration Test (SPT) hammer was utilized to advance the soil test borings.

The following alignments were investigated by soil testing or visual reconnaissance:

<table>
<thead>
<tr>
<th>Alignment</th>
<th>Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-L-</td>
<td>100+00 to 208+56.55</td>
</tr>
</tbody>
</table>

Areas of Special Geotechnical Interest

1. High Plasticity Clays
High plasticity clays, PI ≥ 26, were encountered in proposed cuts at the following location:

<table>
<thead>
<tr>
<th>Alignment</th>
<th>Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-L-</td>
<td>102+00 to 143+00</td>
</tr>
<tr>
<td>-L-</td>
<td>178+50 to 182+00</td>
</tr>
<tr>
<td>-L-</td>
<td>188+00 to 191+50</td>
</tr>
<tr>
<td>-L-</td>
<td>194+00 to 195+25</td>
</tr>
<tr>
<td>-L-</td>
<td>196+25 to 198+25</td>
</tr>
</tbody>
</table>

High plasticity clays, PI ≥ 26, were encountered near proposed subgrade or in fill sections at the following locations:

<table>
<thead>
<tr>
<th>Alignment</th>
<th>Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-L-</td>
<td>33+50 to 38+00</td>
</tr>
<tr>
<td>-L-</td>
<td>179+50 to 182+00</td>
</tr>
<tr>
<td>-L-</td>
<td>184+00 to 207+50</td>
</tr>
</tbody>
</table>

Physiography and Geology

The project is located in the Piedmont Physiographic Province. The residual soils in the area were derived from the weathering of the parent bedrock encountered at depth along the corridor. Geologically, the project corridor is mapped as being underlain by biotite gneiss and schist. The existing topography along the project is generally flat to gently sloping. There is approximately 140 feet of elevation difference across the project.

Soil Properties

Soils encountered during the investigation along the corridor consist predominately of roadway embankment and residual. Weathered rock or rock was not encountered in any of the borings.

The roadway embankment soils predominately consist of silty clays (A-7). The material encountered was soft to stiff.

The residual soils along the project consist of moderately to highly plastic silty clays (A-7), moderately plastic sandy clays (A-6), sandy silts (A-4), and silty sands (A-2-4). The high plasticity clay soils (PI>25) were encountered near the surface at the locations indicated above. In general the silty and sandy layers were encountered below the surficial clays and alternating to the termination depth of the boring.
Groundwater

In general, the corridor drains to the east towards Muddy Creek which is east of the project. Drainage is accomplished by surface runoff of developed areas and existing stormwater management infrastructure.

Groundwater was not encountered within 6 feet of proposed grades during the investigation.

Respectfully Submitted,
Terracon Consultants, Inc.

James D. Hoskins, III, PE
Principal/Office Manager II

Kevin B. Miller, PG
Senior Staff Geologist
Registered NC No. 2029
ROADWAY EMBANKMENT, MEDIUM STIFF, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC

PAVEMENT

RESIDUAL, STIFF TO VERY STIFF, RED, SILTY CLAY,
WET TO MOIST, HIGHLY PLASTIC

108 + 00

PAVEMENT

RESIDUAL, SOFT TO VERY STIFF, BROWN, SILTY CLAY,
WET TO MOIST, HIGHLY PLASTIC

106 + 00
ROADWAY EMBANKMENT, MEDIUM STIFF, RED, SILTY CLAY, WET TO MOIST, HIGHLY PLASTIC

RESIDUAL, MEDIUM STIFF TO VERY STIFF, RED, SILTY CLAY, WET TO MOIST, HIGHLY PLASTIC

PAVEMENT

RESIDUAL, MEDIUM STIFF TO VERY STIFF, RED, SILTY CLAY, WET TO MOIST, HIGHLY PLASTIC

PAVEMENT

RESIDUAL, MEDIUM STIFF TO VERY STIFF, RED, SILTY CLAY, WET TO MOIST, HIGHLY PLASTIC
4) ROADWAY EMBANKMENT, STIFF, TAN, SILTY CLAY, MOIST, HIGHLY PLASTIC

B-9
129+87
SS-6

PAVEMENT

RESIDUAL, STIFF TO VERY STIFF, RED, SILTY CLAY, WET TO MOIST, HIGHLY PLASTIC

DRI Y
12/15

130+00

ROADWAY EMBANKMENT, STIFF, TAN, SILTY CLAY, MOIST, HIGHLY PLASTIC

RESIDUAL, STIFF TO VERY STIFF, RED, SILTY CLAY, WET TO MOIST, HIGHLY PLASTIC

129+50
ROADWAY EMBANKMENT, STIFF, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC

RESIDUAL, LOOSE, TAN, SILTY SAND, MOIST

MEDIUM STIFF, TAN, SANDY SILT, MOIST

LOOSE, TAN, SILTY SAND, MOIST

PAVEMENT

135+00

135+50

135+30

SS-10

SS-9

SS-8

SS-7

B-1

PROJ. REFERENCE NO.

SHEET NO.

12/15
SEE PLANS FOR DETAIL

ROADWAY EMBANKMENT, STIFF, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC
RESIDUAL, LOOSE, TAN, SILTY SAND, MOIST
MEDIUM STIFF, TAN, SANDY SILT, MOIST
LOOSE, TAN, SILTY SAND, MOIST

PAVEMENT

PROJ. REFERENCE NO. 138 + 00

ROADWAY EMBANKMENT, STIFF, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC
RESIDUAL, LOOSE, TAN, SILTY SAND, MOIST
MEDIUM STIFF, TAN, SANDY SILT, MOIST
LOOSE, TAN, SILTY SAND, MOIST

PAVEMENT

PROJ. REFERENCE NO. 136 + 00
ROADWAY EMBANKMENT: SOFT, RED TO TAN, SILTY CLAY, MOIST; HIGHLY PLASTIC

147+00

ROADWAY EMBANKMENT: SOFT, RED TO TAN, SILTY CLAY, MOIST; HIGHLY PLASTIC

146+50
SEE PLANS FOR DETAIL

RESIDUAL, MEDIUM, STIFF, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC
LOOSE, TAN, SILTY SAND, MOIST
STIFF, TAN, SANDY SILT, MOIST
LOOSE, TAN, SILTY SAND, MOIST

162+50

R ESIDUAL, MEDIUM, STIFF, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC

PAVEMENT

162+20

LOOSE, TAN, SILTY SAND, MOIST
STIFF, TAN, SANDY SILT, MOIST
LOOSE, TAN, SILTY SAND, MOIST

B-20

STIFF, TAN, SANDY SILT, MOIST
LOOSE, TAN, SILTY SAND, MOIST

162+00

8t
DRY
12/15

PAVEMENT

RESIDUAL, MEDIUM, STIFF, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC
LOOSE, TAN, SILTY SAND, MOIST
STIFF, TAN, SANDY SILT, MOIST
LOOSE, TAN, SILTY SAND, MOIST
A RESIDUAL, HARD, ORANGE, SANDY CLAY, MOIST

PAVEMENT

A STIFF, TAN, MOIST, SANDY SILT

A STIFF, RED, MOIST, SILTY CLAY

A STIFF, TAN, MOIST, SANDY SILT

167 + 50

165 + 50
PAVEMENT

ROADWAY EMBANKMENT, MEDIUM STIFF, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC
RESIDUAL, SOFT, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC
MEDIUM STIFF, ORANGE, SANDY SILT, MOIST

185 + 50

183 + 00
ROADWAY EMBANKMENT: MEDIUM STIFF, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC
RESIDUAL, SOFT, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC
MEDIUM STIFF, ORANGE, SANDY SILT, MOIST
PAVEMENT

186+50

ROADWAY EMBANKMENT, MEDIUM STIFF, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC
RESIDUAL, SOFT, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC
MEDIUM STIFF, ORANGE, SANDY SILT, MOIST
PAVEMENT

186+06

B-28

8/23/99

PROJ. REFERENCE NO.
SHEET NO.

B1
DRY
12/16

186+00

L

-1-
PAVEMENT

RESIDUAL, STIFF TO VERY STIFF, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC

SOFT TO MEDIUM STIFF, TAN, SANDY SILT, MOIST

RESIDUAL, STIFF TO VERY STIFF, RED, SILTY CLAY, MOIST, HIGHLY PLASTIC

SOFT TO MEDIUM STIFF, TAN, SANDY SILT, MOIST

191 +50

189 +50
RESIDUAL, SOFT TO MEDIUM STIFF, RED TO TAN, SILTY CLAY, MOIST TO WET, HIGHLY PLASTIC

195+00

RESIDUAL, SOFT TO MEDIUM STIFF, RED TO TAN, SILTY CLAY, MOIST TO WET, HIGHLY PLASTIC

194+50
Roadway embankment, medium stiff, tan, silty clay, moist, highly plastic.

Residual, stiff to very stiff, tan to orange, silty clay, moist to wet, highly plastic.

Pavement.
PAVEMENT

RESIDUAL, STIFF, ORANGE, SILTY CLAY, MOIST, HIGHLY PLASTIC

203+50

RESIDUAL, SOFT TO MEDIUM STIFF, TAN, SILTY CLAY, MOIST, HIGHLY PLASTIC

201+50
RESIDUAL, STIFF, ORANGE, SILTY CLAY, MOIST, HIGHLY PLASTIC

PAVEMENT

204+50

B-34

206+88

HIGHLY PLASTIC

DRY

12/15

204+00
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Boring No.</th>
<th>Station</th>
<th>Direction</th>
<th>Location</th>
<th>Depth Interval (feet)</th>
<th>AASHTO Class.</th>
<th>L.L.</th>
<th>P.I.</th>
<th>% by Weight</th>
<th>% Passing (sieves)</th>
<th>% Moisture</th>
<th>% Organic</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS-1</td>
<td>B-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0 - 2.5</td>
<td>A-7-6 (15)</td>
<td>52</td>
<td>34</td>
<td>Coarse Sand</td>
<td>18.3</td>
<td>28.9</td>
<td>9.8</td>
</tr>
<tr>
<td>SS-2</td>
<td>B-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.5 - 5.0</td>
<td>A-7-6 (19)</td>
<td>58</td>
<td>34</td>
<td>Fine Sand</td>
<td>16.0</td>
<td>26.1</td>
<td>10.9</td>
</tr>
<tr>
<td>SS-3</td>
<td>B-6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0 - 2.5</td>
<td>A-7-6 (31)</td>
<td>71</td>
<td>43</td>
<td>Silt</td>
<td>12.6</td>
<td>19.1</td>
<td>6.1</td>
</tr>
<tr>
<td>SS-4</td>
<td>B-6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.5 - 5.0</td>
<td>A-7-6 (23)</td>
<td>64</td>
<td>35</td>
<td>Clay</td>
<td>13.3</td>
<td>24.9</td>
<td>11.8</td>
</tr>
<tr>
<td>SS-5</td>
<td>B-6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.0 - 7.5</td>
<td>A-7-6 (3)</td>
<td>45</td>
<td>16</td>
<td>#10 Sieve</td>
<td>23.8</td>
<td>37.6</td>
<td>12.9</td>
</tr>
<tr>
<td>SS-6</td>
<td>B-9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0 - 2.5</td>
<td>A-7-6 (6)</td>
<td>49</td>
<td>20</td>
<td>#40 Sieve</td>
<td>17.8</td>
<td>33.6</td>
<td>17.3</td>
</tr>
<tr>
<td>SS-7</td>
<td>B-11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0 - 2.5</td>
<td>A-7-6 (22)</td>
<td>63</td>
<td>36</td>
<td>#200 Sieve</td>
<td>13.0</td>
<td>26.5</td>
<td>9.9</td>
</tr>
<tr>
<td>SS-8</td>
<td>B-11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.5 - 5.0</td>
<td>A-2-4 (5)</td>
<td>35</td>
<td>NP</td>
<td>% Passing</td>
<td>30.5</td>
<td>43.1</td>
<td>9.3</td>
</tr>
<tr>
<td>SS-9</td>
<td>B-11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.0 - 7.5</td>
<td>A-4 (0)</td>
<td>38</td>
<td>NP</td>
<td>% Passing</td>
<td>18.7</td>
<td>49.3</td>
<td>16.1</td>
</tr>
<tr>
<td>SS-10</td>
<td>B-11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.5 - 10.0</td>
<td>A-2-4 (0)</td>
<td>40</td>
<td>NP</td>
<td>% Passing</td>
<td>20.4</td>
<td>60.0</td>
<td>10.4</td>
</tr>
<tr>
<td>SS-11</td>
<td>B-14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0 - 2.5</td>
<td>A-4 (0)</td>
<td>30</td>
<td>NP</td>
<td>% Passing</td>
<td>16.4</td>
<td>49.1</td>
<td>13.4</td>
</tr>
<tr>
<td>SS-12</td>
<td>B-14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.0 - 7.5</td>
<td>A-2-4 (5)</td>
<td>35</td>
<td>NP</td>
<td>% Passing</td>
<td>27.6</td>
<td>55.6</td>
<td>10.7</td>
</tr>
<tr>
<td>SS-13</td>
<td>B-21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0 - 2.5</td>
<td>A-6 (0)</td>
<td>37</td>
<td>19</td>
<td>AASHTO Class</td>
<td>16.7</td>
<td>37.5</td>
<td>11.1</td>
</tr>
<tr>
<td>SS-14</td>
<td>B-21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.5 - 5.0</td>
<td>A-7-5 (8)</td>
<td>50</td>
<td>17</td>
<td>L.L.</td>
<td>13.6</td>
<td>36.8</td>
<td>19.7</td>
</tr>
<tr>
<td>SS-15</td>
<td>B-21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.0 - 7.5</td>
<td>A-4 (0)</td>
<td>33</td>
<td>NP</td>
<td>P.I.</td>
<td>12.1</td>
<td>57.9</td>
<td>17.4</td>
</tr>
<tr>
<td>SS-16</td>
<td>B-25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0 - 2.5</td>
<td>A-7-5 (25)</td>
<td>60</td>
<td>34</td>
<td>#10 Sieve</td>
<td>7.0</td>
<td>28.6</td>
<td>13.5</td>
</tr>
<tr>
<td>SS-17</td>
<td>B-26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.0 - 7.5</td>
<td>A-4 (0)</td>
<td>37</td>
<td>NP</td>
<td>#40 Sieve</td>
<td>9.1</td>
<td>48.7</td>
<td>21.5</td>
</tr>
<tr>
<td>SS-18</td>
<td>B-31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0 - 2.5</td>
<td>A-7-6 (12)</td>
<td>48</td>
<td>28</td>
<td>#200 Sieve</td>
<td>21.0</td>
<td>24.8</td>
<td>11.1</td>
</tr>
<tr>
<td>SS-19</td>
<td>B-31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.5 - 5.0</td>
<td>A-7-6 (14)</td>
<td>51</td>
<td>28</td>
<td>#200 Sieve</td>
<td>14.7</td>
<td>28.6</td>
<td>14.2</td>
</tr>
</tbody>
</table>

NP - NONPLASTIC

Certified Lab Technician Signature

114-01-1203
Certification Number